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Filter diagonalization (Wall, M. R.; Neuhauser, D.J. Chem. Phys. 1995, 102, 8011) is a new and efficient
method for extracting frequencies and damping constants from a short-time segment ofany time-dependent
signal, whether of quantum nature or not. In this letter, we will demonstrate that filter diagonalization can
be used to follow the anharmonic vibrational dynamics of Si6. Using the technique, we can locate (resolve)
the normal modes (including the widths) from even a very short-time correlation signal generated by ab
initio molecular dynamics calculations. Our results show that filter diagonalization can reduce significantly
the necessary sampling time with an ab initio molecular simulation and aid in understanding normal-mode
dynamics for systems that are affected by anharmonicity.

I. Introduction

It is extremely difficult experimentally to determine un-
equivocally the structure of gas-phase clusters. Various forms
of rotation-vibration spectroscopy are perhaps the most defini-
tive techniques for determining such definite structures.1-4

Comparison of analytical models from ab initio calculations of
the normal modes to experimental findings can reveal the
structure of the cluster and its motions. This is not a trivial
task, however, since the normal modes are determined experi-
mentally at finite temperatures, whereas theoretically they would
be conventionally calculated in terms of zero-temperature modes
(i.e., the eigenvalues of the force-constant matrix). Instead, one
would like a method that predicts finite temperature modes via
proper extraction from the true evolution of the molecular
system.
A promising technique for such a proper dynamical treatment

is ab initio molecular dynamics (AIMD) simulation, which is
emerging as a powerful tool to study molecular structure and
dynamics. The advantages of the method are that it allows the

study of complex, many-dimensional systems, without the
construction of a global potential energy surface, and at finite
temperature. And, in addition to location of minima via ab initio
simulated annealing, ab initio molecular dynamics also yields
information on the finite temperature dynamics of the molecular
system.5 It is a very expensive technique, however, which has
made it difficult in the past to extract spectra.
Normal-mode frequencies and line widths are typically

extracted by a Fourier transform of the velocity auto-correlation
function. Because of the CPU-intensive nature of AIMD and
the fact that the Fourier transform6 requires, for high resolution,
very long simulation time,7 this is a very expensive approach.
Further, anharmonic effects can cause overlap of lines in the
Fourier transform. This prevents the accurate extraction of
spectral features.
In recent publications a new approach, filter diagonalization,

was developed, which aims at extracting spectral information
from a short-time signal. The method joins several other
approaches for extracting information from a signal (MUSIC,
maximum entropy or maximum pole and linear prediction,
among others).8-10 One attractive feature of filter diagonal-
ization, however, is that it is suitable also for signals with a
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very large number of frequencies since it treats separately each
small spectral range. Originally,11 filter diagonalization was
developed as a tool for accurate extraction of eigenstates in
quantum systems (and from sparse matrices). The method was
extensively developed and applied in that context.12-21 Later
it was generalized to be a method for extracting spectral
information from a general signal.13 In the new version, filter
diagonalization was applied extensively to classical dynamics,22

NMR studies,23,24 and several challenging semiclassical quan-
tization schemes25,26 where recent works benefited from the
introduction of a box filter leading to particularly simple
equations.25 The closest example to the work reported herein
is a recent application to a rigid Lennard-Jones Ar256 cluster
where the method was demonstrated to be capable of extracting
instantaneous normal-mode spectra,22 and the density of states
was extracted properly.
In this letter, we perform a more detailed study of the

properties of the normal modes and their widths. We study
the application of filter diagonalization to an ab initio dynamics
simulation on a small, relative floppy cluster of Si6. We
investigate the spectra and poles extracted with the method and
show how the locations change with time. We also demonstrate
that the normal-mode spectrum can be obtained even with times
that are too short for a Fourier transform analysis. This is due
to the fact that filter diagonalization uses a divide-and-conquer
strategy to extract spectral information from any general signal.
Specifically, eigenvalues outside the desired range are eliminated
in the first stage by using the filtering basis, while eigenvalues
within the range are extracted by diagonalization of small
matrices. This illustrates the unique advantage to applying filter
diagonalization to ab initio dynamics simulations to obtain
spectra (i.e., minimizing the expense of an ab initio prediction
of fully anharmonic vibrational frequencies). The normal modes
extracted from filter diagonalization will be shown to be red-
shifted (especially at low frequencies) from the modes found
in the normal-mode analysis (i.e., direct diagonalization of the
Hessian matrix) near the minimum configuration. This is due
to bond softening at high amplitudes and shows the advantage
of filter diagonalization, which allows the study of the true
dynamical motions. Finally, in the Appendix, we further
develop the theory to study matrix correlation functions.

II. Filter Diagonalization Methodology

The methodology will be briefly reviewed here; a more
complete coverage is available elsewhere.13,27 The starting point
is a signal,C(t). In ab initio dynamics, this signal can be taken
as the velocity autocorrelation function

Vbi in eq 1 correspond to the Cartesian components of the
velocities for each Si atom. Note that in eq 1, in contrast to
the usual definition of correlation function, we do not average
over initial times. The first assumption is that we can write
the signal as a sum of the damping terms

with ΩJ ≡ ωJ - iΓJ/2. Here the weights (dJ), the frequencies
(ωJ), and the damping factors (ΓJ) are unknowns, as is the
number of terms. (RigorouslyC(t) will not be exactly given
by eq 2, but the assumptions is reasonable even for a small
molecule like Si6.)

Filter diagonalization then writes an artificial unknown
“Hamiltonian”

where at this stage the|φJ) is an arbitrary real vector basis (it
drops out of the final formulas, which only involveC(t)). We
also formally write an initial wave function

At the desired small frequency range, [ωbot,ωtop], we pick
equispaced frequencies

whereδω ) (ωtop - ωbot)/(L - 1). δω should be taken as the
typical level spacing in the range (in practice, one should
increaseL until the results converge).
Using eq 5, we define a set of filtered functions,

whereg(t) is a filter function (a box function,g(t) ) 1 for 0e
t e T, which was employed successfully by Mandelshtam and
Taylor,15 or the original Gaussian filter13 are the most convenient
choices, but a general filter function23 can be used). The filtered
functions serve as an energy-selected basis to the eigenfrequen-
cies in the desired range, so that the eigenvaluesΩJ can be
extracted from diagonalizingH in this nonorthogonal set, i.e.,
by solving the generalized eigenvalue problem

where Skl ≡ (ψk|ψl) can be evaluated directly from the
correlation function

and similarly

The emerging method is very simple: construct the matricesS
andH from C(t) (eqs 8 and 9) and then solve eq 7. (The two-
dimensional integrals in eqs 8 and 9 are easily converted to
simple one-dimensional integrals, with negligible cost. For
details, see refs 27, 23, 16). In addition, the weight is ex-
tracted from

The method is numerically efficient since only a small number
of terms is employed (L ≈ 50-100 even for each window even
for spectra with a very large number of modes).

III. Ab Initio Dynamics Methodology

To generate the velocities for the autocorrelation function we
have performed an ab initio molecular dynamics (AIMD)
simulation. By that we mean that the nuclei are treated as
classical particles and are propagated according to Newton’s
equations of motion, whereas the electrons are treated quantum
mechanically. All the forces on the nuclei are calculated as

C(t) ) ∑
i

Vbi(t)‚Vbi(0) (1)

C(t) ) ∑
J

dJe
-iωJt-ΓJt/2 ) ∑

J

dJe
-iΩJt (2)

H ) ∑
J

|φJ)ΩJ(φJ| (3)

|ψ0) ) ∑
J

dJ
1/2|φJ) (4)

ωl ) ωbot + δω(l - 1), l ) 1, 2, ...,L (5)

ψ(ωl) )∫ eiωlt ψ(t) g(t) dt (6)

HB ) SBΩ (7)

Skl )∫∫ C(t+t′) g(t) g(t′) ei(ωkt+ωlt′) dtdt′ (8)

Hkl ) -∫∫ C(t+t′)i ddt[g(t) g(t′) ei(ωkt+ωlt′)] dtdt′ (9)

dJ
1/2 ) (ψ(0)|φJ) ) ∑

l

BlJ∫ eiElt f(t) C(t) dt (10)
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the negative of the gradient of the Born-Oppenheimer (BO)
potential energy surface (PES) for the electronic ground state
of the system. At each time step along the trajectory the wave
function is fully converged, which guarantees that the system
always remains on the BO PES.
The test case here is the ground singlet state of the Si6 cluster.

The electronic wave function is a restricted complete active
space self-consistent field (r-CASSCF) wave function consisting
of all configurations of the 24 valence electrons in 24 orbitals,
with the restriction that only configurations with the zero open
shells and a maximum of six excited electrons away from the
dominant reference configuration are allowed. Total energy and
gradient calculations were performed using the program
HONDO,28 which was modified to implement the open-shell
restriction.29 This modified HONDO program then was coupled
to our molecular dynamics code as described in previous
work.29-31 Further details of the calibration of this wave
function and its associated dynamcis will be given elsewhere.29

As AIMD is a computationally expensive (time-consuming)
technique, we chose to use a valence double-ú basis with the
core electrons represented by an effective core potential.32

Although we have shown29 that the use of d-polarization
functions is important both for the structure of the PES and its
associated vibrational frequencies, we do not include them here.
The main point of this paper is not to compare frequencies with
experiment, but rather to show how filter diagonalization allows
one to use shorter time correlation functions than required by
the standard Fourier transform for obtaining frequencies. Given
the expense of AIMD, this could have considerable impact on
the length of AIMD trajectories carried out in the future.
At this level of approximation we have performed extensive

simulated annealing calculations,29 and we have determined that
the ground-state structure for the Si6 cluster hasC2 symmetry
with no four atoms sharing the same plane. This geometry was
chosen as the starting geometry for the simulation. The initial
velocities were randomly chosen from a Boltzmann distribution
at T ) 30 K and then adjusted to have zero total linear and
angular momentum. We have used the velocity-Verlet algo-
rithm33 to integrate Newton’s equations with a time step of 100
au (2.42 fs), and the system was propagated for 3300 steps, a
total of 7.99 ps.

IV. Results

Two different correlation functions were prepared with a time
step of dt ) 2.42 fs. The first correlation function was
constructed by calculatingC(t) ) ∑jVbj(t)‚Vbj(ti)0). The sum-
mation is over each component of the velocity for each atom.
Again, we emphasize that unlike the regular definition of
correlation function, here we did not average over the initial
time, but rather held it fixed. A total of 3300 time steps was
used. We first calculated a Fourier transform of the signal for
different lengths of times, which does not resolve the poles due
to overlapping poles (see Figure 1). Next we applied the filter
diagonalization equations with the box filter (this filter was first
suggested in this context in ref 16). Fifty filter functions were
employed, and a frequency range of about 0.00015 au (≈33
cm-1) was sampled each time. The use of overlapping energy
ranges enabled the verification of the accuracy of the eigen-
values. “Good” eigenvalues that appear in overlapping energy
windows have very small intrinsic errors (see ref 13), in contrast
to the spurious eigenvalues that are the result of the over-
determinedness of the filter diagonalization equations.
Table 1 compares the extracted frequencies with the results

from a normal-mode calculation34 [i.e., direct diagonalization

of the numerical force-constant (Hessian) matrix]. The ab initio
Hessian was constructed using finite differences of analytic
gradients of the r-CASSCF energy.
For the purpose of graphical comparison to the analytic

spectrum, we evaluated several expressions. First, we evaluated
the direct Fourier transform, based on the available signal,
∫0tmax C(t)eiΩt. Next we evaluated the same expression, but
under the assumption thatC(t) has the form of eq 2, where the
weights and frequencies are obtained from the filter diagonal-

Figure 1. Short-time FT (Fourier transform) power spectrum and the
short-time FD (filter diagonalization) power spectrum for different
lengths of times,tmax (see text). The correlation signal was calculated
asC(t) ) ∑jVbj(t)‚Vbj(ti)0), wherej runs over all the components of the
velocity for all atoms.

TABLE 1: Extracted Eigenvalues from the ab Initio
Molecular Dynamics Correlation Signal of Si6 by Using
Filter Diagonalization with the Box Filter a

7.99 ps 6.05 ps 4.79 ps

ω Γ |dn| ω Γ |dn| ω Γ |dn|

ω normal
mode
analysis

376.3 4.4 0.15 375.9 3.4 0.13 376.0 2.9 0.012 377.0
372.2 3.1 0.18 371.9 4.0 0.21 371.8 4.5 0.21 371.0
361.6 5.9 0.040 361.6 5.4 0.037 361.3 4.6 0.030 363.0
306.4 3.2 0.031 307.1 5.5 0.041 305.9 5.0 0.055 309.0
302.3 2.8 0.043 300.9 3.3 0.050 299.9 2.6 0.032
258.2 2.1 0.048 259.7 6.0 0.30 260.8 4.5 0.031 264.0

257.9 4.3 0.13 257.3 3.5 0.067 262.0
236.0 2.0 0.040 235.5 2.4 0.053 235.6 2.5 0.051 242.0
193.8 1.3 0.55 193.9 0.9 0.13 193.8 1.1 0.15 197.0
189.3 3.1 0.025 189.6 4.0 0.066 188.9 4.4 0.033 195.0
140.3 2.7 0.012 139.2 3.9 0.022 138.8 6.5 0.032 136.0
125.9 3.7 0.019 126.0 4.1 0.020 124.5 4.2 0.024
76.6 0.1 0.011 76.0 7.1 0.064 77.3 1.1 0.009 87.0
70.0 1.5 0.16 69.8 2.9 0.24 69.6 1.4 0.16 86.0

aResults are shown for varying lengths of the correlation signal.
The correlation signal is constructed by calculatingC(τ) )
(1/T)∑t)0

T Vbj(t)‚Vbj(t+τ). Both the locationsω and the widthsΓ are in
cm-1. |dn| are the absolute weights for the extracted frequencies.
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ization procedure, leading to

The usefulness of this spectrum (which we label as short-time
analytic spectrum) is that it can be compared directly to the
direct Fourier transform. The good agreement of the two
spectra, as demonstrated in Figure 1, shows both the validity
of the assumption thatC(t) can be represented in the form of
eq 2 and the validity of the filter diagonalization procedure for
extracting the spectral information.
While the short-time analytical spectrum is useful for

verifying the validity of the filter diagonalization procedure,
useful graphical information is obtained by settingtmax ) ∞,
i.e., by using the obtained spectral weights to extrapolate the
long-time behavior of the signal. The resulting spectrum
(referred to below as the powerful spectrum) is calculated as

which with the inherent assumption for the form ofC(t) (eq 2)
becomes

The spectrum is shown in Figure 2 (usingti ) 0). Although

we did not show it, the results are similar even for a shifted
correlation signal (withti ) 500).
The spectrum in Figure 2 and Table 1 has several interesting

features. First, the spectra show wide overlap of nearby
frequencies (especially around 300 and 375 cm-1). Moreover,
there is a distinct red-shift of low-frequency modes (≈10 cm-1

for the 70-80 cm-1 mode). The spectra have several strong
peaks and a few minor peaks that cannot be resolved in the
direct Fourier transform but are easily resolved with filter
diagonalization even for a very short time (with 1980 data
points).
Another interesting aspect is the variation of the normal-mode

frequencies, especially their widths, with the signal length. Table
1 shows specifically that the low- and intermediate-frequency
modes change slowly, due to intermode coupling. They also
show the variation of the normal-mode frequencies and their
widths for the two different correlation functions. This indicates
that at different times, different normal modes become the
“dominant” (since the width represents the lifetime of the
specific mode in the system) ones in the Si6 system. This is in
agreement with the results obtained for the Ar256 cluster
calculation.22 Finally we note that the number of frequencies
in the table is not always 12, the expected number of modes.
There are at times 13 or 11 frequencies. The reason for the
discrepancy is that the normal-modes picture is only ap-
proximate. The dynamics mixed the modes so that occasionally
several modes mix together, and this dynamic is correlated,
resulting in a single peak. Further, several modes have very
small weight initially so that their effect is less pronounced. In
addition, the appearance of extra spectral feature is probably
due to overtone interaction (e.g., at 140 cm-1).
The fact that we can accurately represent the line widths (ΓJ)

of the normal modes introduces the question of whether these
features that are due to intermode coupling can be used in
dynamical studies. In this context, we note that in instantaneous
normal-mode studies,35 where frequencies are classified as
purely real or purely imaginary, the purely imaginary normal
modes were shown to be related to the diffusion behavior; an
analogous treatment may be valid here.

V. Conclusions

In conclusion, we have shown that filter diagonalization is
an effective method for extracting normal-mode information
from a short-time segment of the correlation function. These
results should be of interest to those investigators concerned
with identifying molecular structure via vibrational spectroscopy
and to practitioners of molecular simulations. We have shown
that the use of ab initio dynamics coupled with filter diagonal-
ization is a promising way to extract frequencies and line widths
without fitting a potential energy surface. Theorists should take
note of the advantages of filter diagonalization over the Fourier
transform, while experimentalists should recognize this coupling
of techniques as a means to help identify different isomers of
gaseous molecules and clusters.
As a final point, we note that in this work we used the

velocity-velocity correlation function, while the relevant
experimental quantity should be the dipole-dipole correlation
in order to obtain correct intensities in addition to correct
frequencies. In future studies we plan to use this form for more
direct comparison to vibrational measurements; in practice,
however, we expect similar features, e.g., red-shifting of peaks,
since this is a feature which depends on the underlying dynamics
of the normal modes.

Figure 2. Power spectrum (eq 12) from filter diagonalization for
different sampled signal lengths. The correlation signal was calculated
against asC(t) ) ∑jVbj(t)‚Vbj(ti)0), and the spectrum was calculated from
eq 12. The number of data points used to construct the spectrum for
each figure isnt ) 1980, 2500, and 3300, respectively.

C(ω) )∫0tmaxC(t′)eiωt′ dt′ ≡∑
J

dJ
(ei(ω-ΩJ)tmax - 1)

i(ω - ΩJ)

C(ω) )∫0∞ C(t)eiωt dt (11)

C(ω) ) ∑
J

idJ

(ω - ΩJ)
(12)
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VI. Appendix

In this paper, we employed filter diagonalization directly on
the correlation function signal,C(t). Here we outline an
extension of this approach that can allow, in principle, the
extraction of eigenvectors as well as eigenfrequencies.
We use now, in contrast to that in the paper, the initial time-

averaged correlation function

and assume that the normal-mode eigenvectors can be written
as

where theúBn are the normal-mode eigenvectors. For simplicity,
in this derivation we assume that the normal-mode frequencies
are purely real. (Extensions to imaginary frequencies will be
presented in future publications.) It readily follows that

(whereúni is the ith component of thenth eigenvector). If we
assume that〈e-i(Ωn-Ωm)τ〉 ) δnm, it follows that

Thus, by diagonalizing the filter diagonalization equation for a
restricted set ofi, j, we can find úni. The use of filter
diagonalization with many initial vectors was outlined in ref
13. Similarly, we can find the overlaps with a specific set of
initial vectors,ηbk; k ) 1, ...,K, containing any desired number
of vectors (“K”) and construct a set of matrix overlap functions

and use it to extract the overlaps,úBn‚ηbk. These overlaps could

be, for example, measuring the weight of the mode with respect
to certain motions.
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Ch ij(t) )∫ dτ 〈Vi(τ)‚Vj(t+τ)〉

Vb(t) ) ∑
n

ane
-iΩnt‚úBn

Ch ij(t) ) ∑
n
∑
n

|a*n |ameiΩnτe-iΩm(t+τ)úniúnj

Ch ij(t) ) ∑
n

|an2 |úniúnje-iΩnt

Ch k,k′(t) )∫ dτ 〈(ηbk‚Vb(τ))(ηbk′‚Vb(t+τ))〉
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