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Filter diagonalization (Wall, M. R.; Neuhauser, I.Chem Phys 1995 102 8011) is a new and efficient
method for extracting frequencies and damping constants from a short-time segmeagtioie-dependent
signal, whether of quantum nature or not. In this letter, we will demonstrate that filter diagonalization can
be used to follow the anharmonic vibrational dynamics gf fising the technique, we can locate (resolve)

the normal modes (including the widths) from even a very short-time correlation signal generated by ab
initio molecular dynamics calculations. Our results show that filter diagonalization can reduce significantly
the necessary sampling time with an ab initio molecular simulation and aid in understanding normal-mode
dynamics for systems that are affected by anharmonicity.

I. Introduction study of complex, many-dimensional systems, without the
construction of a global potential energy surface, and at finite
temperature. And, in addition to location of minima via ab initio

simulated annealing, ab initio molecular dynamics also yields
information on the finite temperature dynamics of the molecular
systen® It is a very expensive technique, however, which has

It is extremely difficult experimentally to determine un-
equivocally the structure of gas-phase clusters. Various forms
of rotation—vibration spectroscopy are perhaps the most defini-
tive techniques for determining such definite structdrés.
Comparison of analytical models from ab initio calculations of made it difficult in the past to extract spectra.

the normal modes to experimental findings can reveal the . . . .
Normal-mode frequencies and line widths are typically

structure of the cluster and its motions. This is not a trivial ; . .
task. however. since the normal modes are determined eXperi_extracted by a Fourier transform of the velocity auto-correlation

mentally at finite temperatures, whereas theoretically they would fﬁn(;tlon.h Beﬁaque o_f the CI?L;-lnten_swe fnat#reh of AllMD and
be conventionally calculated in terms of zero-temperature modes® "’}Ctt att eI purlgrtergarrl]s. orirequires, for igh reso Ut'onh
(i.e., the eigenvalues of the force-constant matrix). Instead, oneY€"Y 0ng simulation time,this is a very expensive approach.

would like a method that predicts finite temperature modes via Further, b effects can cause overlap of I|nes_|n the
proper extraction from the true evolution of the molecular Fourier transform. This prevents the accurate extraction of
system. spectral features.

A promising technique for such a proper dynamical treatment !N recent publications a new approach, filter diagonalization,
is ab initio molecular dynamics (AIMD) simulation, which is Was developed, which aims at extracting spectral information
emerging as a powerful tool to study molecular structure and from & short-time signal. The method joins several other

dynamics. The advantages of the method are that it allows the@PProaches for extracting information from a signal (MUSIC,
maximum entropy or maximum pole and linear prediction,

* Corresponding author. E-mail: dxn@chem.ucla.edu. among others}-*° One attractive feature of filter diagonal-
t Alfred P. Sloan Fellow, 19961998. ization, however, is that it is suitable also for signals with a
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very large number of frequencies since it treats separately each Filter diagonalization then writes an artificial unknown

small spectral range. Originall},filter diagonalization was

developed as a tool for accurate extraction of eigenstates in
guantum systems (and from sparse matrices). The method was

extensively developed and applied in that coniéx#! Later

it was generalized to be a method for extracting spectral

information from a general sign&. In the new version, filter
diagonalization was applied extensively to classical dynafics,
NMR studies?®24and several challenging semiclassical quan-
tization scheme826 where recent works benefited from the
introduction of a box filter leading to particularly simple
equationg> The closest example to the work reported herein
is a recent application to a rigid Lennard-JonessAcluster

“Hamiltonian”

H= Z [$3)R;(5 )

where at this stage thie;) is an arbitrary real vector basis (it
drops out of the final formulas, which only involg&(t)). We
also formally write an initial wave function

o) = Zdﬁ’zm) (4)

At the desired small frequency rangeyph,wiop], We pick

where the method was demonstrated to be capable of extractingaquispaced frequencies

instantaneous normal-mode speéfrand the density of states
was extracted properly.
In this letter, we perform a more detailed study of the

L

0, = o+ 00(l — 1), 1=1,2, ... (5)

properties of the normal modes and their widths. We study wheredw = (wiwop — wbhop/(L — 1). 0w should be taken as the

the application of filter diagonalization to an ab initio dynamics
simulation on a small, relative floppy cluster ofsSiWe

typical level spacing in the range (in practice, one should
increasel until the results converge).

investigate the spectra and poles extracted with the method and Using eq 5, we define a set of filtered functions,

show how the locations change with time. We also demonstrate
that the normal-mode spectrum can be obtained even with times
that are too short for a Fourier transform analysis. This is due

W)= [ € y(t) gt) ot (6)

to the fact that filter diagonalization uses a divide-and-conquer Whereg(t) is a filter function (a box functiong(t) = 1 for 0 <

strategy to extract spectral information from any general signal.

t < T, which was employed successfully by Mandelshtam and

Specifically, eigenvalues outside the desired range are eliminatedT aylor:'* or the original Gaussian filtétare the most convenient
in the first stage by using the filtering basis, while eigenvalues choices, but a general filter functiitan be used). The filtered

within the range are extracted by diagonalization of small

functions serve as an energy-selected basis to the eigenfrequen-

matrices. This illustrates the unique advantage to applying filter cies in the desired range, so that the eigenvaflesan be

diagonalization to ab initio dynamics simulations to obtain

extracted from diagonalizingl in this nonorthogonal set, i.e.,

spectra (i.e., minimizing the expense of an ab initio prediction by solving the generalized eigenvalue problem

of fully anharmonic vibrational frequencies). The normal modes

extracted from filter diagonalization will be shown to be red-

HB = SBQ @)

shifted (especially at low frequencies) from the modes found \here 5, = (yyly) can be evaluated directly from the
in the normal-mode analysis (i.e., direct diagonalization of the -qrelation function

Hessian matrix) near the minimum configuration. This is due

to bond softening at high amplitudes and shows the advantage

of filter diagonalization, which allows the study of the true
dynamical motions. Finally, in the Appendix, we further
develop the theory to study matrix correlation functions.

Il. Filter Diagonalization Methodology

The methodology will be briefly reviewed here; a more
complete coverage is available elsewhér€. The starting point
is a signalC(t). In ab initio dynamics, this signal can be taken
as the velocity autocorrelation function

= 37,070

)

7; in eq 1 correspond to the Cartesian components of the

velocities for each Si atom. Note that in eq 1, in contrast to
the usual definition of correlation function, we do not average
over initial times. The first assumption is that we can write
the signal as a sum of the damping terms

C(t) — ZdJe—i(/)Jt—TﬂZ — ZdJe—iQﬁ (2)

with Q; = w; — iTy2. Here the weightsd)), the frequencies
(wy), and the damping factord™f) are unknowns, as is the
number of terms. (Rigorouslg(t) will not be exactly given

Se=J J Clt+t) g(t) g(t') € ditelr

and similarly

(8)

Ho=—[f C(t+t')id9t[g(t) g(t') €l dtdt (9)

The emerging method is very simple: construct the mati&es
andH from C(t) (egs 8 and 9) and then solve eq 7. (The two-
dimensional integrals in eqs 8 and 9 are easily converted to
simple one-dimensional integrals, with negligible cost. For
details, see refs 27, 23, 16). In addition, the weight is ex-
tracted from

"= O19) = Y8, [ O CO A (10)

The method is numerically efficient since only a small number
of terms is employed.(~ 50—100 even for each window even
for spectra with a very large number of modes).

To generate the velocities for the autocorrelation function we
have performed an ab initio molecular dynamics (AIMD)
simulation. By that we mean that the nuclei are treated as
classical particles and are propagated according to Newton’s

Ab Initio Dynamics Methodology

by eq 2, but the assumptions is reasonable even for a smallequations of motion, whereas the electrons are treated quantum

molecule like S§.)

mechanically. All the forces on the nuclei are calculated as
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the negative of the gradient of the Ber@ppenheimer (BO) 40000.0 ; : .
potential energy surface (PES) for the electronic ground state ~  + ~ —— Short time FT Power Spectrum (t=4.79ps)
of the system. At each time step along the trajectory the wave 30000.0 — -~ Short time FD Power Spectrum (t=4.79ps)
function is fully converged, which guarantees that the system IC@)l
always remains on the BO PES. 20000.0
The test case here is the ground singlet state of thel\&iter.

The electronic wave function is a restricted complete active 10000.0
space self-consistent field (-CASSCF) wave function consisting

r
s

T

T

of all configurations of the 24 valence electrons in 24 orbitals, 0205 1'500 250.0 350.0
with the restriction that only configurations with the zero open 400000 . . .
shells and a maximum of six excited electrons away from the — Short time FT Power Spectrum (t=6.05ps)

- --— Short time FD Power Spectrum (t=6.05ps) 4

T

dominant reference configuration are allowed. Total energy and 30000.0
gradient calculations were performed using the program IC)
HONDO 28 which was modified to implement the open-shell  20000.0
restriction?® This modified HONDO program then was coupled
to our molecular dynamics code as described in previous 10000.0
work.29-31  Further details of the calibration of this wave

function and its associated dynamcis will be given elsewffere. 0.0
. : . . ) 50.0 150.0 250.0 350.0
As AIMD is a computationally expensive (time-consuming)  40000.0 ) i .
technique, we chose to use a valence dodhbasis with the — Short time FT Power Spectrum (t=7.99ps)
core electrons represented by an effective core potéAtial. 300000 | -~ Shorttime FP Power Spectrum (t=7.99ps) ]

Although we have showf that the use of d-polarization IC(@)l

functions is important both for the structure of the PES and its 20000.0

associated vibrational frequencies, we do not include them here.

The main point of this paper is not to compare frequencies with 10000.0

experiment, but rather to show how filter diagonalization allows

one to use shorter time correlation functions than required by 0.0 i :

the standard Fourier transform for obtaining frequencies. Given 500 1200 © 2500 3500

the expense of AIMD, this could have considerable impact on Figure 1. Short-time FT (Fourier transform) power spectrum and the

the 'e”,gth of AIMD traje.ctorlles carried out in the future. ) sh%rt-time FD (filter diagonalization) powerpspectrl?m for different
At this level of approximation we have performed extensive |engths of times{max (se€ text). The correlation signal was calculated

simulated annealing calculatioffsand we have determined that  asC(t) = 3,7(t)-7(t=0), wherej runs over all the components of the

the ground-state structure for the; 8luster hasC, symmetry velocity for all atoms.

with no four atoms sharing the same plane. This geometry was ) . "

chosgr_l as the starting geometry for the simulation. _Thg ini_tial ;\r/@?elilgf D%ggﬁg%ﬁﬁgg{%ﬁ%ﬂéﬁ; gp%?g;'ﬂté?ng

velocities were randomly chosen from a Boltzmann distribution  Fijter Diagonalization with the Box Filter 2

at T = 30 K and then adjusted to have zero total linear and o normal

angular momentum. We have used the velocity-Verlet algo- 7.99 ps 6.05 ps 4.79 ps mode

rithm33 to integrate Newton’s equations with atime stepof100 9 T |d @ T |dd ® I |di analysis

au (2.42 fs), and the system was propagated for 3300 steps, @763 44 015 3759 34 013 3760 29 0012 377.0

total of 7.99 ps. 3722 3.1 018 371.9 4.0 021 3718 45 021  371.0
361.6 59 0.040 361.6 54 0.037 361.3 4.6 0.030 363.0
IV. Results 306.4 3.2 0.031 307.1 55 0.041 3059 50 0055 309.0

302.3 2.8 0.043 300.9 3.3 0.050 299.9 2.6 0.032
Two different correlation functions were prepared with atime 258.2 2.1 0.048 259.7 6.0 0.30 260.8 4.5 0.031 264.0
step of d = 2.42 fs. The first correlation function was 257.9 43 013 257.3 35 0.067 262.0
constructed by calculating(y) = 5,7(t)%i(t=0). The sum- 2360 20 0.040 2355 24 0053 2356 2.5 0051 2420

o h fth locity f h 193.8 1.3 055 1939 0.9 0.13 1938 1.1 0.15 197.0
mation Is over each component of the velocity for each atom. 189.3 3.1 0.025 189.6 4.0 0.066 188.9 4.4 0.033 195.0

Again, we emphasize that unlike the regular definiton of 1403 27 0012 139.2 3.9 0022 138.8 6.5 0032 136.0
correlation function, here we did not average over the initial 1259 3.7 0.019 126.0 4.1 0.020 124.5 4.2 0.024
time, but rather held it fixed. A total of 3300 time steps was 76.6 0.1 0.011 76.0 7.1 0.064 773 11 0.009  87.0
used. We first calculated a Fourier transform of the signal for 700 1.5 0.16 69.8 2.9 024 69.6 14 0.16 86.0
different lengths of times, which does not resolve the poles due 2Results are shown for varying lengths of the correlation signal.
to overlapping poles (see Figure 1). Next we applied the filter The correlation signal is constructed by calculatitg(r) =
diagonalization equations with the box filter (this filter was first  (1/T)3{,7;(t)*7,(t+1). Both the locations» and the widthd" are in
suggested in this context in ref 16). Fifty filter functions were C¢M*. |di| are the absolute weights for the extracted frequencies.
employed, and a frequency range of about 0.00015~288 ( of the numerical force-constant (Hessian) matrix]. The ab initio
cm1) was sampled each time. The use of overlapping energy Hessian was constructed using finite differences of analytic
ranges enabled the verification of the accuracy of the eigen- gradients of the r-CASSCF energy.
values. “Good” eigenvalues that appear in overlapping energy For the purpose of graphical comparison to the analytic
windows have very small intrinsic errors (see ref 13), in contrast spectrum, we evaluated several expressions. First, we evaluated
to the spurious eigenvalues that are the result of the over-the direct Fourier transform, based on the available signal,
determinedness of the filter diagonalization equations. &= C(H)e. Next we evaluated the same expression, but
Table 1 compares the extracted frequencies with the resultsunder the assumption thé(t) has the form of eq 2, where the
from a normal-mode calculatiéh[i.e., direct diagonalization = weights and frequencies are obtained from the filter diagonal-
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Figure 2. Power spectrum (eq 12) from filter diagonalization for

different sampled signal lengths. The correlation signal was calculate

against a€(t) = Yjzj(t)-7;(t=0), and the spectrum was calculated from

eq 12. The number of data points used to construct the spectrum for

each figure isy, = 1980, 2500, and 3300, respectively.
ization procedure, leading to

. ) (ei(wfg‘])tmax _ 1)
Clw) = [™C(t)e”" dt = Zdj—
i(w— Q)
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we did not show it, the results are similar even for a shifted
correlation signal (with; = 500).

The spectrum in Figure 2 and Table 1 has several interesting
features. First, the spectra show wide overlap of nearby
frequencies (especially around 300 and 375 Hm Moreover,
there is a distinct red-shift of low-frequency modeslQ cnt?
for the 70-80 cnT! mode). The spectra have several strong
peaks and a few minor peaks that cannot be resolved in the
direct Fourier transform but are easily resolved with filter
diagonalization even for a very short time (with 1980 data
points).

Another interesting aspect is the variation of the normal-mode
frequencies, especially their widths, with the signal length. Table
1 shows specifically that the low- and intermediate-frequency
modes change slowly, due to intermode coupling. They also
show the variation of the normal-mode frequencies and their
widths for the two different correlation functions. This indicates
that at different times, different normal modes become the
“dominant” (since the width represents the lifetime of the
specific mode in the system) ones in the Sistem. This is in
agreement with the results obtained for thessArcluster
calculation?2 Finally we note that the number of frequencies
in the table is not always 12, the expected number of modes.
There are at times 13 or 11 frequencies. The reason for the
discrepancy is that the normal-modes picture is only ap-
proximate. The dynamics mixed the modes so that occasionally
several modes mix together, and this dynamic is correlated,
resulting in a single peak. Further, several modes have very
small weight initially so that their effect is less pronounced. In

q addition, the appearance of extra spectral feature is probably

due to overtone interaction (e.g., at 140djn

The fact that we can accurately represent the line widihs (
of the normal modes introduces the question of whether these
features that are due to intermode coupling can be used in
dynamical studies. In this context, we note that in instantaneous
normal-mode studie®, where frequencies are classified as
purely real or purely imaginary, the purely imaginary normal
modes were shown to be related to the diffusion behavior; an
analogous treatment may be valid here.

The usefulness of this spectrum (which we label as short-time
analytic spectrum) is that it can be compared directly to the
direct Fourier transform. The good agreement of the two |4 conclusion, we have shown that filter diagonalization is
spectra, as demonstrated in Figure 1, shows both the validity 5 effective method for extracting normal-mode information
of the assumption tha(t) can be represented in the form of  fom a short-time segment of the correlation function. These
eq 2 and the validity of the filter diagonalization procedure for egyits should be of interest to those investigators concerned
extracting the spectral information. _ with identifying molecular structure via vibrational spectroscopy
While the short-time analytical spectrum is useful for gnq (o practitioners of molecular simulations. We have shown
verifying the validity of the filter diagonalization procedure, hat the use of ab initio dynamics coupled with filter diagonal-
useful graphical information is obtained by settifigx = o, ization is a promising way to extract frequencies and line widths
i.e., by using the obtained spectral weights to extrapolate the ythout fitting a potential energy surface. Theorists should take
long-time behavior of the signal. The resulting spectrum pqe of the advantages of filter diagonalization over the Fourier
(referred to below as the powerful spectrum) is calculated as yansform, while experimentalists should recognize this coupling

V. Conclusions

Clw) = [ C(t)e dt (11)

which with the inherent assumption for the form@ft) (eq 2)
becomes

id,
C = -
(@) Z(w - Q)

The spectrum is shown in Figure 2 (usitg= 0). Although

12)

of techniques as a means to help identify different isomers of
gaseous molecules and clusters.

As a final point, we note that in this work we used the
velocity—velocity correlation function, while the relevant
experimental quantity should be the dipeltipole correlation
in order to obtain correct intensities in addition to correct
frequencies. In future studies we plan to use this form for more
direct comparison to vibrational measurements; in practice,
however, we expect similar features, e.g., red-shifting of peaks,
since this is a feature which depends on the underlying dynamics
of the normal modes.
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VI. Appendix

In this paper, we employed filter diagonalization directly on
the correlation function signalC(t). Here we outline an

extension of this approach that can allow, in principle, the

extraction of eigenvectors as well as eigenfrequencies.

We use now, in contrast to that in the paper, the initial time-

averaged correlation function

Ci = [ dr Oy(r)-y(t+7)0

and assume that the normal-mode eigenvectors can be writter]Dh

as
o) = Yy ae g,

where theEn are the normal-mode eigenvectors. For simplicity,

in this derivation we assume that the normal-mode frequencies

J. Phys. Chem. A, Vol. 102, No. 6, 199885

be, for example, measuring the weight of the mode with respect
to certain motions.
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